復合材料的3D打印已經驗證其發(fā)展三大趨勢。一是我們將繼續(xù)看到流程和系統(tǒng)的工業(yè)化,硬件與軟件發(fā)展的結合將更加支持大批量生產。二是對系統(tǒng)進行更多的傳感控制,以實現(xiàn)實時過程控制-熱,尺寸和光學傳感可提高過程公差。三是用于提高3D打印操作效率的新軟件(例如,預處理工作流程,作業(yè)管理等)更加成熟,從而更深入的用于多材料零件的新設計和仿真。
導讀:PEEK、碳纖維復合材料和陶瓷纖維復合材料具有與金屬相似的耐溫性、耐機械沖擊性和耐化學性。由這些聚合物和復合材料制成的零件具有很多優(yōu)異的性能,那么用3D打印的高性能聚合物材料和復合材料部件代替?zhèn)鹘y(tǒng)制造的金屬部件可行嗎?
開發(fā)具有高強度和高韌性的先進輕量化結構仍然具有挑戰(zhàn)性。來自哈爾濱工業(yè)大學特種陶瓷研究所與先進結構功能一體化材料與綠色制造技術工信部重點實驗室等科研機構的研究人員,通過墨水直寫3D打印技術開展了一項研究,提供了一種結合實驗和模擬的方法,首次制造出具有輕質、高強度和優(yōu)異韌性的3D打印地質聚合物復合結構。
2021年10月9日,3D打印材料和服務提供商CRP Technology利用3D打印技術和Windform SP碳纖維材料制造了一種創(chuàng)新的田徑鞋。他們與威尼斯中長跑運動員Miro Buroni合作,利用粉末床(PBF)激光燒結技術,3D打印了這雙名為Pleko的釘鞋。Buroni表示:3D打印所提供的靈活性以及Windform SP材料的機械特性,使他能夠將他的項目推向定制化和專業(yè)化的 "最高水平"。
近些年,連續(xù)碳纖維增強復合材料由于其具有諸如高比強度和高比剛度等優(yōu)越的機械性能已經被越來越多地應用于飛機機身和其他高端工業(yè)產品。對于具有復雜幾何形狀的復合材料零件,可以在FDM工藝中根據性能要求鋪設纖維。但在FDM打印過程中,噴嘴牽引纖維轉向過程中可能會出現(xiàn)一些缺陷,包括平面外起皺、起泡、牽引向上拉和剪切效應。從而進一步影響制件的機械性能。
為了在比賽中獲得優(yōu)勢,贏在“起跑線”上,運動員、教練員、設計師、工程師和體育科學家都在不斷地追求更進一步。在過去的十年里,3D打印已經成為推動跑步和自行車等運動項目進步的助推器,越來越多的殘奧會運動員在3D打印技術的幫助下變得“更快、更高、更強”。
盡管寶馬可能已經停止了MINI的大規(guī)模定制計劃,但它已在其FIA Formula E安全車MINI電動腳踏車中以更加獨特和有趣的方式應用了3D打印。新型步速車具有由回收碳纖維制成的3D打印組件。
連續(xù)纖維復合材料具有密度低,強度高等優(yōu)點,因而成為國內外航天器結構的主要材料。其傳統(tǒng)的制備工藝復雜并且成本較高,同時缺乏設計靈活性,限制了最終產品的結構和性能。來自美國特拉華大學的研究團隊開發(fā)了一種動態(tài)毛細管驅動的3D打印技術,稱為局部面內輔助加熱3D打印(LITA),復合材料中纖維體積分數(shù)為58%,機械強度和模量分別達到了810MPa和108GPa.
在成功實現(xiàn)3D打印自行車商業(yè)化的幾個步驟之后,Superstrata和Arevo現(xiàn)在通過Superstrata網站在線銷售3D打印碳纖維自行車和電動自行車。客戶可以訪問在線商店,并購買使用Arevo獨特技術3D打印的個性化碳纖維自行車。這一發(fā)展對增材制造(AM)以及整個碳纖維3D打印具有重大意義。
謝菲爾德大學高級制造研究中心(AMRC)的研究人員已經使用3D打印來協(xié)助航空航天制造商空中客車公司的大規(guī)模制造項目。